Artwork

Content provided by Zeta Alpha. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Zeta Alpha or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

Baking the Future of Information Retrieval Models

27:05
 
Distribuie
 

Manage episode 413396136 series 3446693
Content provided by Zeta Alpha. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Zeta Alpha or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

In this episode of Neural Search Talks, we're chatting with Aamir Shakir from Mixed Bread AI, who shares his insights on starting a company that aims to make search smarter with AI. He details their approach to overcoming challenges in embedding models, touching on the significance of data diversity, novel loss functions, and the future of multilingual and multimodal capabilities. We also get insights on their journey, the ups and downs, and what they're excited about for the future.

Timestamps: 0:00 Introduction 0:25 How did mixedbread.ai start? 2:16 The story behind the company name and its "bakers" 4:25 What makes Berlin a great pool for AI talent 6:12 Building as a GPU-poor team 7:05 The recipe behind mxbai-embed-large-v1 9:56 The Angle objective for embedding models 15:00 Going beyond Matryoshka with mxbai-embed-2d-large-v1 17:45 Supporting binary embeddings & quantization 19:07 Collecting large-scale data is key for robust embedding models 21:50 The importance of multilingual and multimodal models for IR 24:07 Where will mixedbread.ai be in 12 months? 26:46 Outro

  continue reading

21 episoade

Artwork
iconDistribuie
 
Manage episode 413396136 series 3446693
Content provided by Zeta Alpha. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Zeta Alpha or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

In this episode of Neural Search Talks, we're chatting with Aamir Shakir from Mixed Bread AI, who shares his insights on starting a company that aims to make search smarter with AI. He details their approach to overcoming challenges in embedding models, touching on the significance of data diversity, novel loss functions, and the future of multilingual and multimodal capabilities. We also get insights on their journey, the ups and downs, and what they're excited about for the future.

Timestamps: 0:00 Introduction 0:25 How did mixedbread.ai start? 2:16 The story behind the company name and its "bakers" 4:25 What makes Berlin a great pool for AI talent 6:12 Building as a GPU-poor team 7:05 The recipe behind mxbai-embed-large-v1 9:56 The Angle objective for embedding models 15:00 Going beyond Matryoshka with mxbai-embed-2d-large-v1 17:45 Supporting binary embeddings & quantization 19:07 Collecting large-scale data is key for robust embedding models 21:50 The importance of multilingual and multimodal models for IR 24:07 Where will mixedbread.ai be in 12 months? 26:46 Outro

  continue reading

21 episoade

Toate episoadele

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință

Listen to this show while you explore
Play