Artwork

Content provided by The Data Flowcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Data Flowcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

The Future of AI in Data Engineering With Astronomer’s Julian LaNeve and David Xue

23:36
 
Distribuie
 

Manage episode 421020853 series 2053958
Content provided by The Data Flowcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Data Flowcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
The world of data orchestration and machine learning is rapidly evolving, and tools like Apache Airflow are at the forefront of these changes. Understanding how to effectively utilize these tools can significantly enhance data processing and AI model deployment. This episode features Julian LaNeve, CTO at Astronomer, and David Xue, Machine Learning Engineer at Astronomer. They delve into the intricacies of data orchestration, generative AI and the practical applications of these technologies in modern data workflows. Key Takeaways: (01:51) The pressure to engage in the generative AI space. (02:02) Generative AI can elevate data utilization to the next level. (02:43) The transparency issues with commercial AI models. (04:27) High-quality data in model performance is crucial. (06:40) Running new models on smaller devices, like phones. (12:19) Fine-tuning LLMs to handle millions of task failures. (16:54) Teaching AI to understand specific logs, not general passages, is a goal. (21:56) Using Airflow as a general-purpose orchestration tool. (22:00) Airflow is adaptable for various use cases, including ETL and ML systems. Resources Mentioned: Julian LaNeve - https://www.linkedin.com/in/julianlaneve/ Atronomer - https://www.linkedin.com/company/astronomer/ David Xue - https://www.linkedin.com/in/david-xue-uva/ Apache Airflow - https://airflow.apache.org/ Meta’s Open Source Llama 3 model: https://ai.meta.com/blog/meta-llama-3/https://ai.meta.com/blog/meta-llama-3/ Microsoft’s Phi-3 model: https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/ GPT-4 - https://www.openai.com/research/gpt-4 Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #ai #automation #airflow #machinelearning
  continue reading

35 episoade

Artwork
iconDistribuie
 
Manage episode 421020853 series 2053958
Content provided by The Data Flowcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Data Flowcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
The world of data orchestration and machine learning is rapidly evolving, and tools like Apache Airflow are at the forefront of these changes. Understanding how to effectively utilize these tools can significantly enhance data processing and AI model deployment. This episode features Julian LaNeve, CTO at Astronomer, and David Xue, Machine Learning Engineer at Astronomer. They delve into the intricacies of data orchestration, generative AI and the practical applications of these technologies in modern data workflows. Key Takeaways: (01:51) The pressure to engage in the generative AI space. (02:02) Generative AI can elevate data utilization to the next level. (02:43) The transparency issues with commercial AI models. (04:27) High-quality data in model performance is crucial. (06:40) Running new models on smaller devices, like phones. (12:19) Fine-tuning LLMs to handle millions of task failures. (16:54) Teaching AI to understand specific logs, not general passages, is a goal. (21:56) Using Airflow as a general-purpose orchestration tool. (22:00) Airflow is adaptable for various use cases, including ETL and ML systems. Resources Mentioned: Julian LaNeve - https://www.linkedin.com/in/julianlaneve/ Atronomer - https://www.linkedin.com/company/astronomer/ David Xue - https://www.linkedin.com/in/david-xue-uva/ Apache Airflow - https://airflow.apache.org/ Meta’s Open Source Llama 3 model: https://ai.meta.com/blog/meta-llama-3/https://ai.meta.com/blog/meta-llama-3/ Microsoft’s Phi-3 model: https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/ GPT-4 - https://www.openai.com/research/gpt-4 Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #ai #automation #airflow #machinelearning
  continue reading

35 episoade

Toate episoadele

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință