Artwork

Content provided by ASA Publications' Office. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by ASA Publications' Office or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

Ultrasound Transducers for Measuring Martian Wind Speeds

14:39
 
Distribuie
 

Manage episode 436243199 series 2859015
Content provided by ASA Publications' Office. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by ASA Publications' Office or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

We have yet to fully understand the wind on Mars, even though it transfers heat, momentum, and molecules from the surface. Traditionally, heat loss and motion detectors have been used to measure wind speeds. Robert D. White (Tufts University) discusses his team's work on ultrasound transducers that may offer a more precise way to measure turbulent eddies on the Red Planet.
Associated paper: Robert D. White, Rishabh Chaudhary, Zijia Zhao, Luisa Chiesa, Ian Neeson, and Don Banfield. "Modeling and characterization of gas coupled ultrasonic transducers at low pressures and temperatures and implications for sonic anemometry on Mars." J. Acoust. Soc. Am. 156, 968- 988 (2024) https://doi.org/10.1121/10.0028008.

Read more from The Journal of the Acoustical Society of America (JASA).
Learn more about Acoustical Society of America Publications.
Music Credit: Min 2019 by minwbu from Pixabay.

  continue reading

68 episoade

Artwork
iconDistribuie
 
Manage episode 436243199 series 2859015
Content provided by ASA Publications' Office. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by ASA Publications' Office or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

We have yet to fully understand the wind on Mars, even though it transfers heat, momentum, and molecules from the surface. Traditionally, heat loss and motion detectors have been used to measure wind speeds. Robert D. White (Tufts University) discusses his team's work on ultrasound transducers that may offer a more precise way to measure turbulent eddies on the Red Planet.
Associated paper: Robert D. White, Rishabh Chaudhary, Zijia Zhao, Luisa Chiesa, Ian Neeson, and Don Banfield. "Modeling and characterization of gas coupled ultrasonic transducers at low pressures and temperatures and implications for sonic anemometry on Mars." J. Acoust. Soc. Am. 156, 968- 988 (2024) https://doi.org/10.1121/10.0028008.

Read more from The Journal of the Acoustical Society of America (JASA).
Learn more about Acoustical Society of America Publications.
Music Credit: Min 2019 by minwbu from Pixabay.

  continue reading

68 episoade

Toate episoadele

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință