Artwork

Content provided by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

Gaussian Processes

20:55
 
Distribuie
 

Manage episode 259927860 series 74115
Content provided by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
It’s pretty common to fit a function to a dataset when you’re a data scientist. But in many cases, it’s not clear what kind of function might be most appropriate—linear? quadratic? sinusoidal? some combination of these, and perhaps others? Gaussian processes introduce a nonparameteric option where you can fit over all the possible types of functions, using the data points in your datasets as constraints on the results that you get (the idea being that, no matter what the “true” underlying function is, it produced the data points you’re trying to fit). What this means is a very flexible, but depending on your parameters not-too-flexible, way to fit complex datasets. The math underlying GPs gets complex, and the links below contain some excellent visualizations that help make the underlying concepts clearer. Check them out! Relevant links: http://katbailey.github.io/post/gaussian-processes-for-dummies/ https://thegradient.pub/gaussian-process-not-quite-for-dummies/ https://distill.pub/2019/visual-exploration-gaussian-processes/
  continue reading

293 episoade

Artwork

Gaussian Processes

Linear Digressions

3,115 subscribers

published

iconDistribuie
 
Manage episode 259927860 series 74115
Content provided by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
It’s pretty common to fit a function to a dataset when you’re a data scientist. But in many cases, it’s not clear what kind of function might be most appropriate—linear? quadratic? sinusoidal? some combination of these, and perhaps others? Gaussian processes introduce a nonparameteric option where you can fit over all the possible types of functions, using the data points in your datasets as constraints on the results that you get (the idea being that, no matter what the “true” underlying function is, it produced the data points you’re trying to fit). What this means is a very flexible, but depending on your parameters not-too-flexible, way to fit complex datasets. The math underlying GPs gets complex, and the links below contain some excellent visualizations that help make the underlying concepts clearer. Check them out! Relevant links: http://katbailey.github.io/post/gaussian-processes-for-dummies/ https://thegradient.pub/gaussian-process-not-quite-for-dummies/ https://distill.pub/2019/visual-exploration-gaussian-processes/
  continue reading

293 episoade

Toate episoadele

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință