Artwork

Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

DIY Fake News Detector: Unmask misinformation with Recurrent Neural Networks

7:02
 
Distribuie
 

Manage episode 430865970 series 3474148
Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/diy-fake-news-detector-unmask-misinformation-with-recurrent-neural-networks.
Explore the power of RNNs in fake news detection, from data preprocessing to model evaluation, showcasing their potential to combat misinformation.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #fake-news, #machine-learning, #lstm, #rnn, #misinformation, #fake-news-detector, #recurrent-neural-networks, and more.
This story was written by: @kisican. Learn more about this writer by checking @kisican's about page, and for more stories, please visit hackernoon.com.
Though challenging, it is equally rewarding to be in a position to build a fake news detection system using RNNs. This code will walk you through the stage of data preprocessing to model evaluation. The power of RNNs, especially LSTMs, is utilised while decoding sequential data to make a distinction between real and fake news. If we could fine-tune these models and get hold of global news datasets, AI can then be core in battling misinformation.

  continue reading

316 episoade

Artwork
iconDistribuie
 
Manage episode 430865970 series 3474148
Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/diy-fake-news-detector-unmask-misinformation-with-recurrent-neural-networks.
Explore the power of RNNs in fake news detection, from data preprocessing to model evaluation, showcasing their potential to combat misinformation.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #fake-news, #machine-learning, #lstm, #rnn, #misinformation, #fake-news-detector, #recurrent-neural-networks, and more.
This story was written by: @kisican. Learn more about this writer by checking @kisican's about page, and for more stories, please visit hackernoon.com.
Though challenging, it is equally rewarding to be in a position to build a fake news detection system using RNNs. This code will walk you through the stage of data preprocessing to model evaluation. The power of RNNs, especially LSTMs, is utilised while decoding sequential data to make a distinction between real and fake news. If we could fine-tune these models and get hold of global news datasets, AI can then be core in battling misinformation.

  continue reading

316 episoade

Toate episoadele

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință