Artwork

Content provided by meQuanics. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by meQuanics or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

meQuanics - QSI@UTS Seminar Series - S11 - Kai-Min Chung (Acedemia Sinica)

1:05:44
 
Distribuie
 

Manage episode 305948167 series 1277392
Content provided by meQuanics. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by meQuanics or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

During this time of lockdown, the centre for quantum software and information (QSI) at the University of Technology Sydney has launched an online seminar series. With talks once or twice a week from leading researchers in the field, meQuanics is supporting this series by mirroring the audio from each talk. I would encourage if you listen to this episode, to visit and subscribe to the UTS:QSI YouTube page to see each of these talks with the associated slides to help it make more sense.

https://youtu.be/XSJks4cRDv0

Cryptographic protocols for classical clients to verifiably delegate quantum computation to untrusted quantum servers - the desiderata and their feasibility.

TITLE: How well can a classical client delegate quantum computation?

SPEAKER: Dr Kai-Min Chung

AFFILIATION: Institute of Information Science, Academia Sinica, Taiwan

HOSTED BY: Prof Zhengfeng Ji, UTS Centre for Quantum Software and Information

ABSTRACT: In a recent breakthrough, Mahadev (FOCS 2018) constructed the first classical verification of quantum computation (CVQC) protocol that allows a classical client to delegate the computation of a BQP language (i.e., a decision problem) to an efficient quantum server. In this talk, we present several generalizations of Mahadev’s work. In particular, we initiate the study of CVQC protocols for quantum *sampling* problems and construct the first such protocol that allows a classical client to verifiably obtain a sample drawn from a quantum computation from a quantum server. We also construct the first protocol with efficient verification, i.e., the client’s runtime can be sublinear in the quantum time complexity of the delegated computation. Finally, we present a generic compiler that compiles any CVQC protocol to achieve blindness, i.e., the server learns nothing about the client’s input, which leads to the first constant-round blind CVQC protocol. Based on joint works with Nai-Hui Chia, Takashi Yamakawa, Yi Lee, Han-Husan Lin, and Xiaodi Wu

REFERENCES: Classical Verification of Quantum Computations with Efficient Verifier: https://arxiv.org/abs/1912.00990

  continue reading

82 episoade

Artwork
iconDistribuie
 
Manage episode 305948167 series 1277392
Content provided by meQuanics. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by meQuanics or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

During this time of lockdown, the centre for quantum software and information (QSI) at the University of Technology Sydney has launched an online seminar series. With talks once or twice a week from leading researchers in the field, meQuanics is supporting this series by mirroring the audio from each talk. I would encourage if you listen to this episode, to visit and subscribe to the UTS:QSI YouTube page to see each of these talks with the associated slides to help it make more sense.

https://youtu.be/XSJks4cRDv0

Cryptographic protocols for classical clients to verifiably delegate quantum computation to untrusted quantum servers - the desiderata and their feasibility.

TITLE: How well can a classical client delegate quantum computation?

SPEAKER: Dr Kai-Min Chung

AFFILIATION: Institute of Information Science, Academia Sinica, Taiwan

HOSTED BY: Prof Zhengfeng Ji, UTS Centre for Quantum Software and Information

ABSTRACT: In a recent breakthrough, Mahadev (FOCS 2018) constructed the first classical verification of quantum computation (CVQC) protocol that allows a classical client to delegate the computation of a BQP language (i.e., a decision problem) to an efficient quantum server. In this talk, we present several generalizations of Mahadev’s work. In particular, we initiate the study of CVQC protocols for quantum *sampling* problems and construct the first such protocol that allows a classical client to verifiably obtain a sample drawn from a quantum computation from a quantum server. We also construct the first protocol with efficient verification, i.e., the client’s runtime can be sublinear in the quantum time complexity of the delegated computation. Finally, we present a generic compiler that compiles any CVQC protocol to achieve blindness, i.e., the server learns nothing about the client’s input, which leads to the first constant-round blind CVQC protocol. Based on joint works with Nai-Hui Chia, Takashi Yamakawa, Yi Lee, Han-Husan Lin, and Xiaodi Wu

REFERENCES: Classical Verification of Quantum Computations with Efficient Verifier: https://arxiv.org/abs/1912.00990

  continue reading

82 episoade

Wszystkie odcinki

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință