Artwork

Content provided by O'Reilly Media. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by O'Reilly Media or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

Katharine Jarmul on using Python for data analysis

26:17
 
Distribuie
 

Manage episode 192583113 series 1433313
Content provided by O'Reilly Media. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by O'Reilly Media or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

The O’Reilly Programming Podcast: Wrangling data with Python’s libraries and packages.

In this episode of the O’Reilly Programming Podcast, I talk with Katharine Jarmul, a Python developer and data analyst whose company, Kjamistan, provides consulting and training on topics surrounding machine learning, natural language processing, and data testing. Jarmul is the co-author (along with Jacqueline Kazil) of the O’Reilly book Data Wrangling with Python, and she has presented the live online training course Practical Data Cleaning with Python.

Discussion points:

  • How data wrangling enables you to take real-world data and “clean it, organize it, validate it, and put it in some format you can actually work with,” says Jarmul.
  • Why Python has become a preferred language for use in data science: Jarmul cites the accessibility of the language and the emergence of packages such as NumPy, pandas, SciPy, and scikit-learn.
  • Jarmul calls pandas “Excel on steroids” and says, “it allows you to manipulate tabular data, and transform it quite easily. For anyone using structured, tabular data, you can’t go wrong with doing some part of your analysis in pandas.”
  • She cites gensim and spaCy as her favorite NLP Python libraries, praising them for “the ability to just install a library and have it do quite a lot of deep learning or machine learning tasks for you.”

Other links:

  continue reading

25 episoade

Artwork
iconDistribuie
 
Manage episode 192583113 series 1433313
Content provided by O'Reilly Media. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by O'Reilly Media or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

The O’Reilly Programming Podcast: Wrangling data with Python’s libraries and packages.

In this episode of the O’Reilly Programming Podcast, I talk with Katharine Jarmul, a Python developer and data analyst whose company, Kjamistan, provides consulting and training on topics surrounding machine learning, natural language processing, and data testing. Jarmul is the co-author (along with Jacqueline Kazil) of the O’Reilly book Data Wrangling with Python, and she has presented the live online training course Practical Data Cleaning with Python.

Discussion points:

  • How data wrangling enables you to take real-world data and “clean it, organize it, validate it, and put it in some format you can actually work with,” says Jarmul.
  • Why Python has become a preferred language for use in data science: Jarmul cites the accessibility of the language and the emergence of packages such as NumPy, pandas, SciPy, and scikit-learn.
  • Jarmul calls pandas “Excel on steroids” and says, “it allows you to manipulate tabular data, and transform it quite easily. For anyone using structured, tabular data, you can’t go wrong with doing some part of your analysis in pandas.”
  • She cites gensim and spaCy as her favorite NLP Python libraries, praising them for “the ability to just install a library and have it do quite a lot of deep learning or machine learning tasks for you.”

Other links:

  continue reading

25 episoade

ทุกตอน

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință

Listen to this show while you explore
Play