Artwork

Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

Load Balancing For High Performance Computing Using Quantum Annealing: Adaptive Mesh Refinement

4:57
 
Distribuie
 

Manage episode 427186820 series 3474159
Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/load-balancing-for-high-performance-computing-using-quantum-annealing-adaptive-mesh-refinement.
Exploring quantum annealing's efficacy in load balancing for high-performance computing with grid-based and off-grid simulations on quantum hardware.
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #load-balancing, #high-performance-computing, #quantum-annealing, #grid-based-simulation, #off-grid-simulation, #computational-physics, #exascale-computing, #parallel-computing, and more.
This story was written by: @loadbalancing. Learn more about this writer by checking @loadbalancing's about page, and for more stories, please visit hackernoon.com.
In order to formulate load balancing for AMR as an Ising problem suitable for annealers, data was gathered using CompReal66, a fully compressible, finite difference flow solver for the Navier-Stokes equations. Data is defined on a nested hierarchy of logically rectangular collection of cells called grids (or patches) Each level refers to the union of all grids that share the same mesh spacing.

  continue reading

297 episoade

Artwork
iconDistribuie
 
Manage episode 427186820 series 3474159
Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/load-balancing-for-high-performance-computing-using-quantum-annealing-adaptive-mesh-refinement.
Exploring quantum annealing's efficacy in load balancing for high-performance computing with grid-based and off-grid simulations on quantum hardware.
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #load-balancing, #high-performance-computing, #quantum-annealing, #grid-based-simulation, #off-grid-simulation, #computational-physics, #exascale-computing, #parallel-computing, and more.
This story was written by: @loadbalancing. Learn more about this writer by checking @loadbalancing's about page, and for more stories, please visit hackernoon.com.
In order to formulate load balancing for AMR as an Ising problem suitable for annealers, data was gathered using CompReal66, a fully compressible, finite difference flow solver for the Navier-Stokes equations. Data is defined on a nested hierarchy of logically rectangular collection of cells called grids (or patches) Each level refers to the union of all grids that share the same mesh spacing.

  continue reading

297 episoade

Wszystkie odcinki

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință