Artwork

Content provided by Jochen Wersdörfer / Dominik Geldmacher. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jochen Wersdörfer / Dominik Geldmacher or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

Data Science

1:41:14
 
Distribuie
 

Manage episode 524695548 series 2536516
Content provided by Jochen Wersdörfer / Dominik Geldmacher. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jochen Wersdörfer / Dominik Geldmacher or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

Data Science (click here to comment)

, Jochen

🎙️ Zu Gast: Mira – Data Scientist, Geschäftsführerin einer Berliner Data-Science-Beratung und Host des Podcasts Data Science Deep Dive.

Dominik und Jochen sprechen mit ihr darüber, was Data Science in der Praxis heute bedeutet: weniger Machine-Learning-Magie, mehr solides Datenhandwerk – von der Problemanalyse über Feature Engineering bis hin zu Deployment, Monitoring und Drift. An konkreten Projekten (u. a. einer Luftschadstoff-Prognose für die Berliner Senatsverwaltung) wird klar, wo die echten Herausforderungen liegen – und wo die spannendsten Hebel sind.

In dieser Episode:

  • 📊 Was "Data Science" eigentlich umfasst – Skills, Rollen und warum man dafür nicht unbedingt Informatik studiert haben muss
  • 🔄 CRISP-DM in der Praxis – vom Use-Case bis Wartung und Drift, und warum die Modellierung oft nur ein kleiner Teil ist
  • 🛠️ Tooling & Architektur – Pandas, Scikit-Learn, Polars, Kubernetes, ClickHouse, REST-API, MLflow und Alerting mit Redash
  • 🌳 XGBoost vs. TabPFN – warum Gradient Boosting immer noch der Klassiker ist und was Transformer-Modelle für tabulare Daten können
  • 🔍 Feature Engineering & Interpretierbarkeit – mit SHAP verstehen, was das Modell gelernt hat
  • ⚡ Performance in der Realität – Spark vs. Polars, Sampling, vektorisierte Operationen und warum "verteilen" nicht automatisch schneller heißt
  • 🚗 LLMs für Vorhersagen – Experimente mit Gebrauchtwagenpreisen und warum Finetuning hier Sinn macht

Unsere Picks:

Shownotes

Unsere E-Mail für Fragen, Anregungen & Kommentare: [email protected]

Data Science

Picks

  continue reading

67 episoade

Artwork

Data Science

Python Podcast

32 subscribers

published

iconDistribuie
 
Manage episode 524695548 series 2536516
Content provided by Jochen Wersdörfer / Dominik Geldmacher. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jochen Wersdörfer / Dominik Geldmacher or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

Data Science (click here to comment)

, Jochen

🎙️ Zu Gast: Mira – Data Scientist, Geschäftsführerin einer Berliner Data-Science-Beratung und Host des Podcasts Data Science Deep Dive.

Dominik und Jochen sprechen mit ihr darüber, was Data Science in der Praxis heute bedeutet: weniger Machine-Learning-Magie, mehr solides Datenhandwerk – von der Problemanalyse über Feature Engineering bis hin zu Deployment, Monitoring und Drift. An konkreten Projekten (u. a. einer Luftschadstoff-Prognose für die Berliner Senatsverwaltung) wird klar, wo die echten Herausforderungen liegen – und wo die spannendsten Hebel sind.

In dieser Episode:

  • 📊 Was "Data Science" eigentlich umfasst – Skills, Rollen und warum man dafür nicht unbedingt Informatik studiert haben muss
  • 🔄 CRISP-DM in der Praxis – vom Use-Case bis Wartung und Drift, und warum die Modellierung oft nur ein kleiner Teil ist
  • 🛠️ Tooling & Architektur – Pandas, Scikit-Learn, Polars, Kubernetes, ClickHouse, REST-API, MLflow und Alerting mit Redash
  • 🌳 XGBoost vs. TabPFN – warum Gradient Boosting immer noch der Klassiker ist und was Transformer-Modelle für tabulare Daten können
  • 🔍 Feature Engineering & Interpretierbarkeit – mit SHAP verstehen, was das Modell gelernt hat
  • ⚡ Performance in der Realität – Spark vs. Polars, Sampling, vektorisierte Operationen und warum "verteilen" nicht automatisch schneller heißt
  • 🚗 LLMs für Vorhersagen – Experimente mit Gebrauchtwagenpreisen und warum Finetuning hier Sinn macht

Unsere Picks:

Shownotes

Unsere E-Mail für Fragen, Anregungen & Kommentare: [email protected]

Data Science

Picks

  continue reading

67 episoade

Toate episoadele

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință

Listen to this show while you explore
Play