Artwork

Content provided by Brian Carter. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Brian Carter or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

Does the DIFF Transformer make a Diff?

8:03
 
Distribuie
 

Manage episode 449252081 series 3605861
Content provided by Brian Carter. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Brian Carter or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

Introducing a novel transformer architecture, Differential Transformer, designed to improve the performance of large language models. The key innovation lies in its differential attention mechanism, which calculates attention scores as the difference between two separate softmax attention maps. This subtraction effectively cancels out irrelevant context (attention noise), enabling the model to focus on crucial information. The authors demonstrate that Differential Transformer outperforms traditional transformers in various tasks, including long-context modeling, key information retrieval, and hallucination mitigation. Furthermore, Differential Transformer exhibits greater robustness to order permutations in in-context learning and reduces activation outliers, paving the way for more efficient quantization. These advantages position Differential Transformer as a promising foundation architecture for future large language model development.

Read the research here: https://arxiv.org/pdf/2410.05258

  continue reading

71 episoade

Artwork
iconDistribuie
 
Manage episode 449252081 series 3605861
Content provided by Brian Carter. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Brian Carter or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

Introducing a novel transformer architecture, Differential Transformer, designed to improve the performance of large language models. The key innovation lies in its differential attention mechanism, which calculates attention scores as the difference between two separate softmax attention maps. This subtraction effectively cancels out irrelevant context (attention noise), enabling the model to focus on crucial information. The authors demonstrate that Differential Transformer outperforms traditional transformers in various tasks, including long-context modeling, key information retrieval, and hallucination mitigation. Furthermore, Differential Transformer exhibits greater robustness to order permutations in in-context learning and reduces activation outliers, paving the way for more efficient quantization. These advantages position Differential Transformer as a promising foundation architecture for future large language model development.

Read the research here: https://arxiv.org/pdf/2410.05258

  continue reading

71 episoade

Toate episoadele

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință

Listen to this show while you explore
Play