Artwork

Content provided by The Nonlinear Fund. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Nonlinear Fund or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

AF - AtP*: An efficient and scalable method for localizing LLM behaviour to components by Neel Nanda

1:30
 
Distribuie
 

Manage episode 407687256 series 3337166
Content provided by The Nonlinear Fund. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Nonlinear Fund or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Link to original article
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: AtP*: An efficient and scalable method for localizing LLM behaviour to components, published by Neel Nanda on March 18, 2024 on The AI Alignment Forum. Authors: János Kramár, Tom Lieberum, Rohin Shah, Neel Nanda A new paper from the Google DeepMind mechanistic interpretability team, from core contributors János Kramár and Tom Lieberum Tweet thread summary, paper Abstract: Activation Patching is a method of directly computing causal attributions of behavior to model components. However, applying it exhaustively requires a sweep with cost scaling linearly in the number of model components, which can be prohibitively expensive for SoTA Large Language Models (LLMs). We investigate Attribution Patching (AtP), a fast gradient-based approximation to Activation Patching and find two classes of failure modes of AtP which lead to significant false negatives. We propose a variant of AtP called AtP*, with two changes to address these failure modes while retaining scalability. We present the first systematic study of AtP and alternative methods for faster activation patching and show that AtP significantly outperforms all other investigated methods, with AtP* providing further significant improvement. Finally, we provide a method to bound the probability of remaining false negatives of AtP* estimates. Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
  continue reading

385 episoade

Artwork
iconDistribuie
 
Manage episode 407687256 series 3337166
Content provided by The Nonlinear Fund. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Nonlinear Fund or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Link to original article
Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: AtP*: An efficient and scalable method for localizing LLM behaviour to components, published by Neel Nanda on March 18, 2024 on The AI Alignment Forum. Authors: János Kramár, Tom Lieberum, Rohin Shah, Neel Nanda A new paper from the Google DeepMind mechanistic interpretability team, from core contributors János Kramár and Tom Lieberum Tweet thread summary, paper Abstract: Activation Patching is a method of directly computing causal attributions of behavior to model components. However, applying it exhaustively requires a sweep with cost scaling linearly in the number of model components, which can be prohibitively expensive for SoTA Large Language Models (LLMs). We investigate Attribution Patching (AtP), a fast gradient-based approximation to Activation Patching and find two classes of failure modes of AtP which lead to significant false negatives. We propose a variant of AtP called AtP*, with two changes to address these failure modes while retaining scalability. We present the first systematic study of AtP and alternative methods for faster activation patching and show that AtP significantly outperforms all other investigated methods, with AtP* providing further significant improvement. Finally, we provide a method to bound the probability of remaining false negatives of AtP* estimates. Thanks for listening. To help us out with The Nonlinear Library or to learn more, please visit nonlinear.org.
  continue reading

385 episoade

Toate episoadele

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință