Artwork

Content provided by PyTorch, Edward Yang, and Team PyTorch. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by PyTorch, Edward Yang, and Team PyTorch or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.
Player FM - Aplicație Podcast
Treceți offline cu aplicația Player FM !

Inductor - IR

18:00
 
Distribuie
 

Manage episode 395704338 series 2921809
Content provided by PyTorch, Edward Yang, and Team PyTorch. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by PyTorch, Edward Yang, and Team PyTorch or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

Inductor IR is an intermediate representation that lives between ATen FX graphs and the final Triton code generated by Inductor. It was designed to faithfully represent PyTorch semantics and accordingly models views, mutation and striding. When you write a lowering from ATen operators to Inductor IR, you get a TensorBox for each Tensor argument which contains a reference to the underlying IR (via StorageBox, and then a Buffer/ComputedBuffer) that says how the Tensor was computed. The inner computation is represented via define-by-run, which allows for compact definition of IR representation, while still allowing you to extract an FX graph out if you desire. Scheduling then takes buffers of inductor IR and decides what can be fused. Inductor IR may have too many nodes, this would be a good thing to refactor in the future.

  continue reading

83 episoade

Artwork

Inductor - IR

PyTorch Developer Podcast

34 subscribers

published

iconDistribuie
 
Manage episode 395704338 series 2921809
Content provided by PyTorch, Edward Yang, and Team PyTorch. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by PyTorch, Edward Yang, and Team PyTorch or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://ro.player.fm/legal.

Inductor IR is an intermediate representation that lives between ATen FX graphs and the final Triton code generated by Inductor. It was designed to faithfully represent PyTorch semantics and accordingly models views, mutation and striding. When you write a lowering from ATen operators to Inductor IR, you get a TensorBox for each Tensor argument which contains a reference to the underlying IR (via StorageBox, and then a Buffer/ComputedBuffer) that says how the Tensor was computed. The inner computation is represented via define-by-run, which allows for compact definition of IR representation, while still allowing you to extract an FX graph out if you desire. Scheduling then takes buffers of inductor IR and decides what can be fused. Inductor IR may have too many nodes, this would be a good thing to refactor in the future.

  continue reading

83 episoade

Semua episode

×
 
Loading …

Bun venit la Player FM!

Player FM scanează web-ul pentru podcast-uri de înaltă calitate pentru a vă putea bucura acum. Este cea mai bună aplicație pentru podcast și funcționează pe Android, iPhone și pe web. Înscrieți-vă pentru a sincroniza abonamentele pe toate dispozitivele.

 

Ghid rapid de referință